Search results
Results from the WOW.Com Content Network
Model predictive control (MPC) is an advanced method of process control that is used to control a process while satisfying a set of constraints. It has been in use in the process industries in chemical plants and oil refineries since the 1980s.
Jan M. Maciejowski is a British electrical engineer. He is professor emeritus of control engineering at the University of Cambridge . He is notable for his contributions to system identification and control .
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
The Smith predictor (invented by O. J. M. Smith in 1957) is a type of predictive controller designed to control systems with a significant feedback time delay. The idea can be illustrated as follows. The idea can be illustrated as follows.
Constraints can be either hard constraints, which set conditions for the variables that are required to be satisfied, or soft constraints, which have some variable values that are penalized in the objective function if, and based on the extent that, the conditions on the variables are not satisfied.
Optimal control problem benchmark (Luus) with an integral objective, inequality, and differential constraint. Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. [1]
Depending on the configuration, open-chain robotic manipulators require a degree of trajectory optimization. For instance, a robotic arm with 7 joints and 7 links (7-DOF) is a redundant system where one cartesian position of an end-effector can correspond to an infinite number of joint angle positions, thus this redundancy can be used to optimize a trajectory to, for example, avoid any ...
Robust model predictive control is a more conservative method which considers the worst scenario in the optimization procedure. However, this method, similar to other robust controls, deteriorates the overall controller's performance and also is applicable only for systems with bounded uncertainties. The alternative method, SMPC, considers soft ...