Search results
Results from the WOW.Com Content Network
A proof by contrapositive is a direct proof of the contrapositive of a statement. [14] However, indirect methods such as proof by contradiction can also be used with contraposition, as, for example, in the proof of the irrationality of the square root of 2 .
The converse may or may not be true, and even if true, the proof may be difficult. For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context.
In logic, an inverse is a type of conditional sentence which is an immediate inference made from another conditional sentence. More specifically, given a conditional sentence of the form P → Q {\displaystyle P\rightarrow Q} , the inverse refers to the sentence ¬ P → ¬ Q {\displaystyle \neg P\rightarrow \neg Q} .
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
Such a proof is again a refutation by contradiction. A typical example is the proof of the proposition "there is no smallest positive rational number": assume there is a smallest positive rational number q and derive a contradiction by observing that q / 2 is even smaller than q and still positive.
The standard of rigor is not absolute and has varied throughout history. A proof can be presented differently depending on the intended audience. To gain acceptance, a proof has to meet communal standards of rigor; an argument considered vague or incomplete may be rejected. The concept of proof is formalized in the field of mathematical logic. [12]
Example 1. One way to demonstrate the invalidity of this argument form is with a counterexample with true premises but an obviously false conclusion.