Search results
Results from the WOW.Com Content Network
The formula represents the liquid-drop model proposed by George Gamow, [1] which can account for most of the terms in the formula and gives rough estimates for the values of the coefficients. It was first formulated in 1935 by German physicist Carl Friedrich von Weizsäcker , [ 2 ] and although refinements have been made to the coefficients ...
where is the ratio of the rate of the substituted reaction compared to the reference reaction, ρ* is the sensitivity factor for the reaction to polar effects, σ* is the polar substituent constant that describes the field and inductive effects of the substituent, δ is the sensitivity factor for the reaction to steric effects, and E s is ...
Chilton–Colburn J-factor analogy (also known as the modified Reynolds analogy [1]) is a successful and widely used analogy between heat, momentum, and mass transfer.The basic mechanisms and mathematics of heat, mass, and momentum transport are essentially the same.
The response factor can be expressed on a molar, volume or mass [1] basis. Where the true amount of sample and standard are equal: = where A is the signal (e.g. peak area) and the subscript i indicates the sample and the subscript st indicates the standard. [2]
By definition, the atomic mass of carbon-12 is 12 Da, giving a molar mass of 12 g/mol. The number of molecules per mole in a substance is given by the Avogadro constant, exactly 6.022 140 76 × 10 23 mol −1 since the 2019 revision of the SI. Thus, to calculate the stoichiometry by mass, the number of molecules required for each reactant is ...
Charge transfer coefficient, and symmetry factor (symbols α and β, respectively) are two related parameters used in description of the kinetics of electrochemical reactions. They appear in the Butler–Volmer equation and related expressions.
In chemistry, ion transport number, also called the transference number, is the fraction of the total electric current carried in an electrolyte by a given ionic species i: [1] = Differences in transport number arise from differences in electrical mobility.
In quantum chemistry, Slater's rules provide numerical values for the effective nuclear charge in a many-electron atom. Each electron is said to experience less than the actual nuclear charge, because of shielding or screening by the other electrons.