Search results
Results from the WOW.Com Content Network
That is, sequential logic has state (memory) while combinational logic does not. Sequential logic is used to construct finite-state machines, a basic building block in all digital circuitry. Virtually all circuits in practical digital devices are a mixture of combinational and sequential logic. A familiar example of a device with sequential ...
Some techniques encode state transition graphs (STG) to produce two-level and multi-level implementations targeting low power. [8] [9] Re-encoding of existing logic-level sequential circuits for power optimizations has been proposed. [10] Spanning-tree-based state encoding [11] Depth-first methods [12] Minimum distance methods [12] 1-level ...
Logic optimization is a process of finding an equivalent representation of the specified logic circuit under one or more specified constraints. This process is a part of a logic synthesis applied in digital electronics and integrated circuit design. Generally, the circuit is constrained to a minimum chip area meeting a predefined response delay.
If there is a cyclic path of logic from a register's output to its input (or from a set of registers outputs to its inputs), the circuit is called a state machine or can be said to be sequential logic. If there are logic paths from a register to another without a cycle, it is called a pipeline.
Logic redundancy can be removed by several well-known techniques, such as binary decision diagrams, Boolean algebra, Karnaugh maps, the Quine–McCluskey algorithm, and the heuristic computer method. These operations are typically performed within a computer-aided design system.
The algorithmic state machine (ASM) is a method for designing finite-state machines (FSMs) originally developed by Thomas E. Osborne at the University of California, Berkeley (UCB) since 1960, [1] introduced to and implemented at Hewlett-Packard in 1968, formalized and expanded since 1967 and written about by Christopher R. Clare since 1970.
Asynchronous logic is the logic required for the design of asynchronous digital systems. These function without a clock signal and so individual logic elements cannot be relied upon to have a discrete true/false state at any given time. Boolean (two valued) logic is inadequate for this and so extensions are required.
Switching circuit theory is the mathematical study of the properties of networks of idealized switches. Such networks may be strictly combinational logic, in which their output state is only a function of the present state of their inputs; or may also contain sequential elements, where the present state depends on the present state and past states; in that sense, sequential circuits are said ...