enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elasticity of a function - Wikipedia

    en.wikipedia.org/wiki/Elasticity_of_a_function

    The elasticity at a point is the limit of the arc elasticity between two points as the separation between those two points approaches zero. The concept of elasticity is widely used in economics and metabolic control analysis (MCA); see elasticity (economics) and elasticity coefficient respectively for details.

  3. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after ...

  4. Elasticity - Wikipedia

    en.wikipedia.org/wiki/Elasticity

    Elasticity often refers to: Elasticity (physics), ... Mathematics. Elasticity of a function, a mathematical definition of point elasticity; Arc elasticity;

  5. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.

  6. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The bulk modulus (K) describes volumetric elasticity, or the tendency of an object to deform in all directions when uniformly loaded in all directions; it is defined as volumetric stress over volumetric strain, and is the inverse of compressibility. The bulk modulus is an extension of Young's modulus to three dimensions.

  7. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    The elasticity tensor is a fourth-rank tensor describing the stress-strain relation in a linear elastic material. [ 1 ] [ 2 ] Other names are elastic modulus tensor and stiffness tensor . Common symbols include C {\displaystyle \mathbf {C} } and Y {\displaystyle \mathbf {Y} } .

  8. Compatibility (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Compatibility_(mechanics)

    Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886. [1] In the continuum description of a solid body we imagine the body to be composed of a set of infinitesimal volumes or material points.

  9. Stiffness - Wikipedia

    en.wikipedia.org/wiki/Stiffness

    The stiffness of a structure is of principal importance in many engineering applications, so the modulus of elasticity is often one of the primary properties considered when selecting a material. A high modulus of elasticity is sought when deflection is undesirable, while a low modulus of elasticity is required when flexibility is needed.