Search results
Results from the WOW.Com Content Network
An object's absolute bolometric magnitude (M bol) represents its total luminosity over all wavelengths, rather than in a single filter band, as expressed on a logarithmic magnitude scale. To convert from an absolute magnitude in a specific filter band to absolute bolometric magnitude, a bolometric correction (BC) is applied. [3]
The bolometric correction scale is set by the absolute magnitude of the Sun and an adopted (arbitrary) absolute bolometric magnitude for the Sun.Hence, while the absolute magnitude of the Sun in different filters is a physical and not arbitrary quantity, the absolute bolometric magnitude of the Sun is arbitrary, and so the zero-point of the bolometric correction scale that follows from it.
The apparent magnitude is the observed visible brightness from Earth which depends on the distance of the object. The absolute magnitude is the apparent magnitude at a distance of 10 pc (3.1 × 10 17 m), therefore the bolometric absolute magnitude is a logarithmic measure of the bolometric luminosity.
A more complex definition of absolute magnitude is used for planets and small Solar System bodies, based on its brightness at one astronomical unit from the observer and the Sun. The Sun has an apparent magnitude of −27 and Sirius , the brightest visible star in the night sky, −1.46.
The absolute magnitude M, of a star or astronomical object is defined as the apparent magnitude it would have as seen from a distance of 10 parsecs (33 ly). The absolute magnitude of the Sun is 4.83 in the V band (visual), 4.68 in the Gaia satellite's G band (green) and 5.48 in the B band (blue). [20] [21] [22]
Luminosity distance D L is defined in terms of the relationship between the absolute magnitude M and apparent magnitude m of an astronomical object. = which gives: = + where D L is measured in parsecs.
The term bolometer is also used in particle physics to designate an unconventional particle detector. They use the same principle described above. The bolometers are sensitive not only to light but to every form of energy. The operating principle is similar to that of a calorimeter in thermodynamics.
The effective temperature of the Sun (5778 kelvins) is the temperature a black body of the same size must have to yield the same total emissive power.. The effective temperature of a star is the temperature of a black body with the same luminosity per surface area (F Bol) as the star and is defined according to the Stefan–Boltzmann law F Bol = σT eff 4.