Search results
Results from the WOW.Com Content Network
68 578 904 422 is the last known number that requires 9 fifth powers (Integer sequence S001057, Tony D. Noe, Jul 04 2017), 617 597 724 is the last number less than 1.3 × 10 9 that requires 10 fifth powers, and 51 033 617 is the last number less than 1.3 × 10 9 that requires 11.
If it is divisible by 2 continue by adding the digits of the original number and checking if that sum is a multiple of 3. Any number which is both a multiple of 2 and of 3 is a multiple of 6. Example. 324 (The original number) Final digit 4 is even, so 324 is divisible by 2, and may be divisible by 6. 3 + 2 + 4 = 9 which is a multiple of 3.
The limit of a sequence of powers of a number greater than one ... n 2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10; 1: 1: 1: 1: 1: ... The argument is defined up to an integer ...
If 2 k + 1 is prime and k > 0, then k itself must be a power of 2, [1] so 2 k + 1 is a Fermat number; such primes are called Fermat primes. As of 2023 [update] , the only known Fermat primes are F 0 = 3 , F 1 = 5 , F 2 = 17 , F 3 = 257 , and F 4 = 65537 (sequence A019434 in the OEIS ).
A prime number is a number greater than 1 that can only be divided by… Answer: One and itself. What is the sum of the interior angles of a triangle? Answer: 180 degrees. What is the square root ...
The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits. The only powers of 2 with all digits distinct are 2 0 = 1 to 2 15 = 32 768 , 2 20 = 1 048 576 and 2 29 = 536 870 912 .
Initially, let p equal 2, the smallest prime number. Enumerate the multiples of p by counting in increments of p from 2p to n, and mark them in the list (these will be 2p, 3p, 4p, ...; the p itself should not be marked). Find the smallest number in the list greater than p that is not marked. If there was no such number, stop.
For if every even number greater than 4 is the sum of two odd primes, adding 3 to each even number greater than 4 will produce the odd numbers greater than 7 (and 7 itself is equal to 2+2+3). In 2013, Harald Helfgott released a proof of Goldbach's weak conjecture. [ 2 ]