enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    The gradient thus does not vanish in arbitrarily deep networks. Feedforward networks with residual connections can be regarded as an ensemble of relatively shallow nets. In this perspective, they resolve the vanishing gradient problem by being equivalent to ensembles of many shallow networks, for which there is no vanishing gradient problem. [17]

  3. Long short-term memory - Wikipedia

    en.wikipedia.org/wiki/Long_short-term_memory

    Long short-term memory (LSTM) [1] is a type of recurrent neural network (RNN) aimed at mitigating the vanishing gradient problem [2] commonly encountered by traditional RNNs. Its relative insensitivity to gap length is its advantage over other RNNs, hidden Markov models , and other sequence learning methods.

  4. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    Convolutional neural networks that have proven particularly successful in processing visual and other two-dimensional data; [154] [155] where long short-term memory avoids the vanishing gradient problem [156] and can handle signals that have a mix of low and high frequency components aiding large-vocabulary speech recognition, [157] [158] text ...

  6. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    This problem is also solved in the independently recurrent neural network (IndRNN) [87] by reducing the context of a neuron to its own past state and the cross-neuron information can then be explored in the following layers. Memories of different ranges including long-term memory can be learned without the gradient vanishing and exploding problem.

  7. Generative adversarial network - Wikipedia

    en.wikipedia.org/wiki/Generative_adversarial_network

    In such case, the generator cannot learn, a case of the vanishing gradient problem. [ 13 ] Intuitively speaking, the discriminator is too good, and since the generator cannot take any small step (only small steps are considered in gradient descent) to improve its payoff, it does not even try.

  8. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  9. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    Examples include: [17] [18] Lang and Witbrock (1988) [19] trained a fully connected feedforward network where each layer skip-connects to all subsequent layers, like the later DenseNet (2016). In this work, the residual connection was the form x ↦ F ( x ) + P ( x ) {\displaystyle x\mapsto F(x)+P(x)} , where P {\displaystyle P} is a randomly ...