Search results
Results from the WOW.Com Content Network
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
Divisor function σ 0 (n) up to n = 250 Sigma function σ 1 (n) up to n = 250 Sum of the squares of divisors, σ 2 (n), up to n = 250 Sum of cubes of divisors, σ 3 (n) up to n = 250. In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer.
In mathematics, Hooley's delta function (()), also called Erdős--Hooley delta-function, defines the maximum number of divisors of in [,] for all , where is the Euler's number. The first few terms of this sequence are
65536 is the natural number following 65535 and preceding 65537.. 65536 is a power of two: (2 to the 16th power).. 65536 is the smallest number with exactly 17 divisors (but there are smaller numbers with more than 17 divisors; e.g., 180 has 18 divisors) (sequence A005179 in the OEIS).
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
Number 1 is a unitary divisor of every natural number. The number of unitary divisors of a number n is 2 k, where k is the number of distinct prime factors of n. This is because each integer N > 1 is the product of positive powers p r p of distinct prime numbers p. Thus every unitary divisor of N is the product, over a given subset S of the ...
Colossally abundant numbers are one of several classes of integers that try to capture the notion of having many divisors. For a positive integer n, the sum-of-divisors function σ(n) gives the sum of all those numbers that divide n, including 1 and n itself. Paul Bachmann showed that on average, σ(n) is around π 2 n / 6. [6]