Search results
Results from the WOW.Com Content Network
Top-down parsing is a strategy of analyzing unknown data relationships by hypothesizing general parse tree structures and then considering whether the known fundamental structures are compatible with the hypothesis. It occurs in the analysis of both natural languages and computer languages. Top-down parsing can be viewed as an attempt to find ...
Another method [8] is to build the parse forest as you go, augmenting each Earley item with a pointer to a shared packed parse forest (SPPF) node labelled with a triple (s, i, j) where s is a symbol or an LR(0) item (production rule with dot), and i and j give the section of the input string derived by this node. A node's contents are either a ...
In computer science, a recursive descent parser is a kind of top-down parser built from a set of mutually recursive procedures (or a non-recursive equivalent) where each such procedure implements one of the nonterminals of the grammar. Thus the structure of the resulting program closely mirrors that of the grammar it recognizes. [1] [2]
In computer science, an operator-precedence parser is a bottom-up parser that interprets an operator-precedence grammar.For example, most calculators use operator-precedence parsers to convert from the human-readable infix notation relying on order of operations to a format that is optimized for evaluation such as Reverse Polish notation (RPN).
Now the parser has an 'a' on its input stream and an 'S' as its stack top. The parsing table instructs it to apply rule (1) from the grammar and write the rule number 1 to the output stream. The stack becomes: [ F, +, F, ), $] The parser now has an 'a' on its input stream and an 'F' as its stack top. The parsing table instructs it to apply rule ...
An abstract syntax tree (AST) is a data structure used in computer science to represent the structure of a program or code snippet. It is a tree representation of the abstract syntactic structure of text (often source code ) written in a formal language .
It is simple to extend it into a parser that also constructs a parse tree, by storing parse tree nodes as elements of the array, instead of the boolean 1. The node is linked to the array elements that were used to produce it, so as to build the tree structure. Only one such node in each array element is needed if only one parse tree is to be ...
When a top-down parser tries to parse an ambiguous input with respect to an ambiguous context-free grammar (CFG), it may need an exponential number of steps (with respect to the length of the input) to try all alternatives of the CFG in order to produce all possible parse trees. This eventually would require exponential memory space.