enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    Batch normalization (also known as batch norm) is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    The ScaleNorm replaces all LayerNorms inside a transformer by division with L2 norm, then multiplying by a learned parameter ′ (shared by all ScaleNorm modules of a transformer). Query-Key normalization ( QKNorm ) [ 32 ] normalizes query and key vectors to have unit L2 norm.

  4. Hyperparameter optimization - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_optimization

    A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [ 2 ] [ 3 ] Hyperparameter optimization determines the set of hyperparameters that yields an optimal model which minimizes a predefined loss function on a given data set . [ 4 ]

  5. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  6. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    The norm (see also Norms) can be used to approximate the optimal norm via convex relaxation. It can be shown that the L 1 {\displaystyle L_{1}} norm induces sparsity. In the case of least squares, this problem is known as LASSO in statistics and basis pursuit in signal processing.

  7. Fine-tuning (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Fine-tuning_(deep_learning)

    In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]

  8. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    The learning rate and its adjustments may also differ per parameter, in which case it is a diagonal matrix that can be interpreted as an approximation to the inverse of the Hessian matrix in Newton's method. [5] The learning rate is related to the step length determined by inexact line search in quasi-Newton methods and related optimization ...

  9. Regularized least squares - Wikipedia

    en.wikipedia.org/wiki/Regularized_least_squares

    The parameter controls the invertibility of the matrix +. Several methods can be used to solve the above linear system, Cholesky decomposition being probably the method of choice, since the matrix X T X + λ n I {\displaystyle X^{\mathsf {T}}X+\lambda nI} is symmetric and positive definite .