Search results
Results from the WOW.Com Content Network
A rotating frame of reference is a special case of a non-inertial reference frame that is rotating relative to an inertial reference frame. An everyday example of a rotating reference frame is the surface of the Earth. (This article considers only frames rotating about a fixed axis. For more general rotations, see Euler angles.)
By rotating the cube by 45° on the x-axis, the point (1, 1, 1) will therefore become (1, 0, √ 2) as depicted in the diagram. The second rotation aims to bring the same point on the positive z -axis and so needs to perform a rotation of value equal to the arctangent of 1 ⁄ √ 2 which is approximately 35.264°.
A small object nearby may subtend the same solid angle as a larger object farther away. For example, although the Moon is much smaller than the Sun, it is also much closer to Earth. Indeed, as viewed from any point on Earth, both objects have approximately the same solid angle (and therefore apparent size). This is evident during a solar eclipse.
Changing orientation of a rigid body is the same as rotating the axes of a reference frame attached to it.. In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1]
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
Two common methods for finding the volume of a solid of revolution are the disc method and the shell method of integration.To apply these methods, it is easiest to draw the graph in question; identify the area that is to be revolved about the axis of revolution; determine the volume of either a disc-shaped slice of the solid, with thickness δx, or a cylindrical shell of width δx; and then ...
The net force upon the object according to observers in the rotating frame is F B = ma B. If their observations are to result in the correct force on the object when using Newton's laws, they must consider that the additional force F fict is present, so the end result is F B = F A + F fict. Thus, the fictitious force used by observers in B to ...
Every non-trivial rotation is determined by its axis of rotation (a line through the origin) and its angle of rotation. Rotations are not commutative (for example, rotating R 90° in the x-y plane followed by S 90° in the y-z plane is not the same as S followed by R), making the 3D rotation group a nonabelian group.