Search results
Results from the WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
The component of weight force is responsible for the tangential force (when we neglect friction). The centripetal force is due to the change in the direction of velocity. The normal force and weight may also point in the same direction. Both forces can point downwards, yet the object will remain in a circular path without falling down.
[11] [12]: 150 The physics concept of force makes quantitative the everyday idea of a push or a pull. Forces in Newtonian mechanics are often due to strings and ropes, friction, muscle effort, gravity, and so forth. Like displacement, velocity, and acceleration, force is a vector quantity.
In particular, = for perfectly circular orbits (the central force exactly equals the centripetal force requirement, which determines the required angular velocity for a given circular radius). For a repulsive force (k > 0) only e > 1 applies.
Reactive centrifugal force, being one-half of the reaction pair together with centripetal force, is a concept which applies in any reference frame. This distinguishes it from the inertial or fictitious centrifugal force, which appears only in rotating frames.
A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. [1] Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial. [2]
This reaction force is sometimes described as a centrifugal inertial reaction, [44] [45] that is, a force that is centrifugally directed, which is a reactive force equal and opposite to the centripetal force that is curving the path of the mass. The concept of the reactive centrifugal force is sometimes used in mechanics and engineering.
Transverse acceleration (perpendicular to velocity) causes a change in direction. If it is constant in magnitude and changing in direction with the velocity, circular motion ensues. Taking two derivatives of the particle's coordinates concerning time gives the centripetal acceleration