Search results
Results from the WOW.Com Content Network
Powell's dog leg method, also called Powell's hybrid method, is an iterative optimisation algorithm for the solution of non-linear least squares problems, introduced in 1970 by Michael J. D. Powell. [1] Similarly to the Levenberg–Marquardt algorithm, it combines the Gauss–Newton algorithm with gradient descent, but it uses an explicit trust ...
The general idea behind trust region methods is known by many names; the earliest use of the term seems to be by Sorensen (1982). [1] A popular textbook by Fletcher (1980) calls these algorithms restricted-step methods. [2]
In computing, a roundoff error, [1] also called rounding error, [2] is the difference between the result produced by a given algorithm using exact arithmetic and the result produced by the same algorithm using finite-precision, rounded arithmetic. [3]
LMA can also be viewed as Gauss–Newton using a trust region approach. The algorithm was first published in 1944 by Kenneth Levenberg, [1] while working at the Frankford Army Arsenal. It was rediscovered in 1963 by Donald Marquardt, [2] who worked as a statistician at DuPont, and independently by Girard, [3] Wynne [4] and Morrison. [5]
Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs.
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
It addressed the instability issue of another algorithm, the Deep Q-Network (DQN), by using the trust region method to limit the KL divergence between the old and new policies. However, TRPO uses the Hessian matrix (a matrix of second derivatives) to enforce the trust region, but the Hessian is inefficient for large-scale problems. [1]
The idea of Rosenbrock search is also used to initialize some root-finding routines, such as fzero (based on Brent's method) in Matlab. Rosenbrock search is a form of derivative-free search but may perform better on functions with sharp ridges. [6] The method often identifies such a ridge which, in many applications, leads to a solution. [7]