Search results
Results from the WOW.Com Content Network
In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.
In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E 8 lattice and the Leech lattice are two famous examples.
In mathematics, the n-dimensional integer lattice (or cubic lattice), denoted , is the lattice in the Euclidean space whose lattice points are n-tuples of integers. The two-dimensional integer lattice is also called the square lattice , or grid lattice.
The seven lattice systems and their Bravais lattices in three dimensions. In geometry and crystallography, a Bravais lattice, named after Auguste Bravais (), [1] is an infinite array of discrete points generated by a set of discrete translation operations described in three dimensional space by
Archimedean lattices. Add languages. Add links. Article; Talk; English. Read; Edit; View history; Tools. ... List of Euclidean uniform tilings#Convex uniform tilings ...
An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.
In general terms, ideal lattices are lattices corresponding to ideals in rings of the form [] / for some irreducible polynomial of degree . [1] All of the definitions of ideal lattices from prior work are instances of the following general notion: let be a ring whose additive group is isomorphic to (i.e., it is a free -module of rank), and let be an additive isomorphism mapping to some lattice ...
In mathematics, a perfect lattice (or perfect form) is a lattice in a Euclidean vector space, that is completely determined by the set S of its minimal vectors in the sense that there is only one positive definite quadratic form taking value 1 at all points of S. Perfect lattices were introduced by Korkine & Zolotareff (1877).