Search results
Results from the WOW.Com Content Network
Quaternion – used to optimise RMSD calculations; Kabsch algorithm – an algorithm used to minimize the RMSD by first finding the best rotation [3] GDT – a different structure comparison measure; TM-score – a different structure comparison measure; Longest continuous segment (LCS) — A different structure comparison measure
The Kabsch algorithm, also known as the Kabsch-Umeyama algorithm, [1] named after Wolfgang Kabsch and Shinji Umeyama, is a method for calculating the optimal rotation matrix that minimizes the RMSD (root mean squared deviation) between two paired sets of points.
In experimental psychology, the RMSD is used to assess how well mathematical or computational models of behavior explain the empirically observed behavior. In GIS, the RMSD is one measure used to assess the accuracy of spatial analysis and remote sensing. In hydrogeology, RMSD and NRMSD are used to evaluate the calibration of a groundwater ...
The TM-score is intended as a more accurate measure of the global similarity of full-length protein structures than the often used RMSD measure. The TM-score indicates the similarity between two structures by a score between ( 0 , 1 ] {\displaystyle (0,1]} , where 1 indicates a perfect match between two structures (thus the higher the better ...
John Burkardt: Nelder–Mead code in Matlab - note that a variation of the Nelder–Mead method is also implemented by the Matlab function fminsearch. Nelder-Mead optimization in Python in the SciPy library. nelder-mead - A Python implementation of the Nelder–Mead method; NelderMead() - A Go/Golang implementation
The Ramer–Douglas–Peucker algorithm, also known as the Douglas–Peucker algorithm and iterative end-point fit algorithm, is an algorithm that decimates a curve composed of line segments to a similar curve with fewer points. It was one of the earliest successful algorithms developed for cartographic generalization. It produces the most ...
Powell's dog leg method, also called Powell's hybrid method, is an iterative optimisation algorithm for the solution of non-linear least squares problems, introduced in 1970 by Michael J. D. Powell. [1] Similarly to the Levenberg–Marquardt algorithm, it combines the Gauss–Newton algorithm with gradient descent, but it uses an explicit trust ...
The short BB step size is same as a linearized minimum-residual step. BB applies the step sizes upon the forward direction vector for the next iterate, instead of the prior direction vector as if for another line-search step. Barzilai and Borwein proved their method converges R-superlinearly for quadratic minimization in two dimensions.