enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The two-dimensional case is the only non-trivial (i.e. not one-dimensional) case where the rotation matrices group is commutative, so that it does not matter in which order multiple rotations are performed. An alternative convention uses rotating axes, [1] and the above matrices also represent a rotation of the axes clockwise through an angle θ.

  3. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    These matrices all have a determinant whose absolute value is unity. Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2).

  4. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    That it is an orthogonal matrix means that its rows are a set of orthogonal unit vectors (so they are an orthonormal basis) as are its columns, making it simple to spot and check if a matrix is a valid rotation matrix. Above-mentioned Euler angles and axis–angle representations can be easily converted to a rotation matrix.

  5. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  6. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    Then, any orthogonal matrix is either a rotation or an improper rotation. A general orthogonal matrix has only one real eigenvalue, either +1 or −1. When it is +1 the matrix is a rotation. When −1, the matrix is an improper rotation. If R has more than one invariant vector then φ = 0 and R = I. Any vector is an invariant vector of I.

  7. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The geometric interpretation of curl as rotation corresponds to identifying bivectors (2-vectors) in 3 dimensions with the special orthogonal Lie algebra of infinitesimal rotations (in coordinates, skew-symmetric 3 × 3 matrices), while representing rotations by vectors corresponds to identifying 1-vectors (equivalently, 2-vectors) and ...

  8. Jacobi rotation - Wikipedia

    en.wikipedia.org/wiki/Jacobi_rotation

    In numerical linear algebra, a Jacobi rotation is a rotation, Q kℓ, of a 2-dimensional linear subspace of an n-dimensional inner product space, chosen to zero a symmetric pair of off-diagonal entries of an n×n real symmetric matrix, A, when applied as a similarity transformation:

  9. Infinitesimal rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_rotation_matrix

    An infinitesimal rotation matrix or differential rotation matrix is a matrix representing an infinitely small rotation.. While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.