enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    The two-dimensional case is the only non-trivial (i.e. not one-dimensional) case where the rotation matrices group is commutative, so that it does not matter in which order multiple rotations are performed. An alternative convention uses rotating axes, [1] and the above matrices also represent a rotation of the axes clockwise through an angle θ.

  3. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    These matrices all have a determinant whose absolute value is unity. Rotation matrices have a determinant of +1, and reflection matrices have a determinant of −1. The set of all orthogonal two-dimensional matrices together with matrix multiplication form the orthogonal group: O(2).

  4. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    That it is an orthogonal matrix means that its rows are a set of orthogonal unit vectors (so they are an orthonormal basis) as are its columns, making it simple to spot and check if a matrix is a valid rotation matrix. Above-mentioned Euler angles and axis–angle representations can be easily converted to a rotation matrix.

  5. Rotation of axes in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_of_axes_in_two...

    In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .

  6. Orientation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Orientation_(geometry)

    The rotations were described by orthogonal matrices referred to as rotation matrices or direction cosine matrices. When used to represent an orientation, a rotation matrix is commonly called orientation matrix, or attitude matrix. The above-mentioned Euler vector is the eigenvector of a rotation matrix (a rotation matrix has a unique real ...

  7. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    In 2 dimensions the curl of a vector field is not a vector field but a function, as 2-dimensional rotations are given by an angle (a scalar – an orientation is required to choose whether one counts clockwise or counterclockwise rotations as positive); this is not the div, but is rather perpendicular to it.

  8. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point.

  9. Rotational invariance - Wikipedia

    en.wikipedia.org/wiki/Rotational_invariance

    Symbolically, the rotation invariance of a real-valued function of two real variables is f ( x ′ ) = f ( R x ) = f ( x ) {\displaystyle f(\mathbf {x} ')=f(\mathbf {Rx} )=f(\mathbf {x} )} In words, the function of the rotated coordinates takes exactly the same form as it did with the initial coordinates, the only difference is the rotated ...