Search results
Results from the WOW.Com Content Network
It is one of the most common water-soluble salts of barium. Like most other water-soluble barium salts, it is a white powder, highly toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting to the dihydrate BaCl 2 ·2H 2 O, which are colourless crystals with a bitter salty taste. It has limited use in the ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Lipophilicity (from Greek λίπος "fat" and φίλος "friendly") is the ability of a chemical compound to dissolve in fats, oils, lipids, and non-polar solvents such as hexane or toluene. Such compounds are called lipophilic (translated as "fat-loving" or "fat-liking" [1] [2]). Such non-polar solvents are themselves lipophilic, and the ...
The solubility of a specific solute in a specific solvent is generally expressed as the concentration of a saturated solution of the two. [1] Any of the several ways of expressing concentration of solutions can be used, such as the mass, volume, or amount in moles of the solute for a specific mass, volume, or mole amount of the solvent or of the solution.
The water-soluble barium sulfide is the starting point for other compounds: treating BaS with oxygen produces the sulfate, with nitric acid the nitrate, with aqueous carbon dioxide the carbonate, and so on. [9]: 6 The nitrate can be thermally decomposed to yield the oxide.
Barium carbonate is widely used in the ceramics industry as an ingredient in glazes. It acts as a flux, a matting and crystallizing agent and combines with certain colouring oxides to produce unique colours not easily attainable by other means.
HLB scale showing classification of surfactant function. The hydrophilic–lipophilic balance (HLB) of a surfactant is a measure of its degree of hydrophilicity or lipophilicity, determined by calculating percentages of molecular weights for the hydrophilic and lipophilic portions of the surfactant molecule, as described by Griffin in 1949 [1] [2] and 1954. [3]
The solubility is dependent on how well each ion interacts with the solvent, so certain patterns become apparent. For example, salts of sodium, potassium and ammonium are usually soluble in water. Notable exceptions include ammonium hexachloroplatinate and potassium cobaltinitrite. Most nitrates and many sulfates are water-soluble.