enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Separation of variables - Wikipedia

    en.wikipedia.org/wiki/Separation_of_variables

    Separation of variables may be possible in some coordinate systems but not others, [2] and which coordinate systems allow for separation depends on the symmetry properties of the equation. [3] Below is an outline of an argument demonstrating the applicability of the method to certain linear equations, although the precise method may differ in ...

  3. Separable partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Separable_partial...

    Laplace's equation on is an example of a partial differential equation that admits solutions through -separation of variables; in the three-dimensional case this uses 6-sphere coordinates. (This should not be confused with the case of a separable ODE, which refers to a somewhat different class of problems that can be broken into a pair of ...

  4. Partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Partial_differential_equation

    In the method of separation of variables, one reduces a PDE to a PDE in fewer variables, which is an ordinary differential equation if in one variable – these are in turn easier to solve. This is possible for simple PDEs, which are called separable partial differential equations , and the domain is generally a rectangle (a product of intervals).

  5. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The Helmholtz equation often arises in the study of physical problems involving partial differential equations (PDEs) in both space and time. The Helmholtz equation, which represents a time-independent form of the wave equation, results from applying the technique of separation of variables to reduce the complexity of the analysis.

  6. Ordinary differential equation - Wikipedia

    en.wikipedia.org/wiki/Ordinary_differential_equation

    For the equation and initial value problem: ′ = (,), = if and / are continuous in a closed rectangle = [, +] [, +] in the plane, where and are real (symbolically: ,) and denotes the Cartesian product, square brackets denote closed intervals, then there is an interval = [, +] [, +] for some where the solution to the above equation and initial ...

  7. Biharmonic equation - Wikipedia

    en.wikipedia.org/wiki/Biharmonic_equation

    For example, in three dimensional ... which can be solved by separation of variables. The result is the Michell solution. 2-dimensional space. The general ...

  8. Spherical harmonics - Wikipedia

    en.wikipedia.org/wiki/Spherical_harmonics

    An orthogonal basis of spherical harmonics in higher dimensions can be constructed inductively by the method of separation of variables, by solving the Sturm-Liouville problem for the spherical Laplacian = ⁡ ⁡ + ⁡ where φ is the axial coordinate in a spherical coordinate system on S n−1.

  9. Porous medium equation - Wikipedia

    en.wikipedia.org/wiki/Porous_medium_equation

    The porous medium equation name originates from its use in describing the flow of an ideal gas in a homogeneous porous medium. [6] We require three equations to completely specify the medium's density , flow velocity field , and pressure : the continuity equation for conservation of mass; Darcy's law for flow in a porous medium; and the ideal gas equation of state.