Search results
Results from the WOW.Com Content Network
Separation of variables may be possible in some coordinate systems but not others, [2] and which coordinate systems allow for separation depends on the symmetry properties of the equation. [3] Below is an outline of an argument demonstrating the applicability of the method to certain linear equations, although the precise method may differ in ...
Laplace's equation on is an example of a partial differential equation that admits solutions through -separation of variables; in the three-dimensional case this uses 6-sphere coordinates. (This should not be confused with the case of a separable ODE, which refers to a somewhat different class of problems that can be broken into a pair of ...
In the method of separation of variables, one reduces a PDE to a PDE in fewer variables, which is an ordinary differential equation if in one variable – these are in turn easier to solve. This is possible for simple PDEs, which are called separable partial differential equations , and the domain is generally a rectangle (a product of intervals).
The Helmholtz equation often arises in the study of physical problems involving partial differential equations (PDEs) in both space and time. The Helmholtz equation, which represents a time-independent form of the wave equation, results from applying the technique of separation of variables to reduce the complexity of the analysis.
For the equation and initial value problem: ′ = (,), = if and / are continuous in a closed rectangle = [, +] [, +] in the plane, where and are real (symbolically: ,) and denotes the Cartesian product, square brackets denote closed intervals, then there is an interval = [, +] [, +] for some where the solution to the above equation and initial ...
For example, in three dimensional ... which can be solved by separation of variables. The result is the Michell solution. 2-dimensional space. The general ...
An orthogonal basis of spherical harmonics in higher dimensions can be constructed inductively by the method of separation of variables, by solving the Sturm-Liouville problem for the spherical Laplacian = + where φ is the axial coordinate in a spherical coordinate system on S n−1.
The porous medium equation name originates from its use in describing the flow of an ideal gas in a homogeneous porous medium. [6] We require three equations to completely specify the medium's density , flow velocity field , and pressure : the continuity equation for conservation of mass; Darcy's law for flow in a porous medium; and the ideal gas equation of state.