Search results
Results from the WOW.Com Content Network
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ± n. For this exception, we have: a = k⋅d + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value ...
To test for divisibility by D, where D ends in 1, 3, 7, or 9, the following method can be used. [12] Find any multiple of D ending in 9. (If D ends respectively in 1, 3, 7, or 9, then multiply by 9, 3, 7, or 1.) Then add 1 and divide by 10, denoting the result as m. Then a number N = 10t + q is divisible by D if and only if mq + t is divisible ...
This 4 is then placed under and subtracted from the 5 to get the remainder, 1, which is placed under the 4 under the 5. Afterwards, the first as-yet unused digit in the dividend, in this case the first digit 0 after the 5, is copied directly underneath itself and next to the remainder 1, to form the number 10.
For example, there are six divisors of 4; they are 1, 2, 4, −1, −2, and −4, but only the positive ones (1, 2, and 4) would usually be mentioned. 1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd.
Divide the year's last two digits (call this y) by 12 and let a be the floor of the quotient. Let b be the remainder of the same quotient. Divide that remainder by 4 and let c be the floor of the quotient. Let d be the sum of the three numbers (d = a + b + c). (It is again possible here to divide by seven and take the remainder.
E.g.: x**2 + 3*x + 5 will be represented as [1, 3, 5] """ out = list (dividend) # Copy the dividend normalizer = divisor [0] for i in range (len (dividend)-len (divisor) + 1): # For general polynomial division (when polynomials are non-monic), # we need to normalize by dividing the coefficient with the divisor's first coefficient out [i ...