Search results
Results from the WOW.Com Content Network
A triangle's centroid is the point that maximizes the product of the directed distances of a point from the triangle's sidelines. [ 20 ] Let A B C {\displaystyle ABC} be a triangle, let G {\displaystyle G} be its centroid, and let D , E , F {\displaystyle D,E,F} be the midpoints of segments B C , C A , A B , {\displaystyle BC,CA,AB,} respectively.
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
For example, the circumcircle and the incircle of the reference triangle are triangle conics. Other examples are the Steiner ellipse which is an ellipse passing through the vertices and having its centre at the centroid of the reference triangle, the Kiepert hyperbola which is a conic passing through the vertices, the centroid and the ...
A strict definition of a triangle centre is a point whose trilinear coordinates are f(a,b,c) : f(b,c,a) : f(c,a,b) where f is a function of the lengths of the three sides of the triangle, a, b, c such that: f is homogeneous in a, b, c; i.e., f(ta,tb,tc)=t h f(a,b,c) for some real power h; thus the position of a centre is independent of scale.
In other words, if C is the centroid of the base, the distance from C to a vertex of the base is twice that from C to the midpoint of an edge of the base. This follows from the fact that the medians of a triangle intersect at its centroid, and this point divides each of them in two segments, one of which is twice as long as the other (see proof).
Sixteen key points of a triangle are its vertices, the midpoints of its sides, the feet of its altitudes, the feet of its internal angle bisectors, and its circumcenter, centroid, orthocenter, and incenter. These can be taken three at a time to yield 139 distinct nontrivial problems of constructing a triangle from three points. [12]