Search results
Results from the WOW.Com Content Network
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Flow velocity vector field : u = (,) m s −1 [L][T] −1 Velocity pseudovector field : ω = s −1 [T] −1 ...
If the fluid flow is brought to rest at some point, this point is called a stagnation point, and at this point the static pressure is equal to the stagnation pressure. If the fluid flow is irrotational, the total pressure is uniform and Bernoulli's principle can be summarized as "total pressure is constant everywhere in the fluid flow". [1]:
In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):
Thus, the Cauchy Number is defined as the ratio between inertial and the compressibility force (elastic force) in a flow and can be expressed as =, where = density of fluid, (SI units: kg/m 3) u = local flow velocity, (SI units: m/s)
The solution of the equations is a flow velocity. It is a vector field—to every point in a fluid, at any moment in a time interval, it gives a vector whose direction and magnitude are those of the velocity of the fluid at that point in space and at that moment in time. It is usually studied in three spatial dimensions and one time dimension ...
In this region, the velocity of the fluid will be higher than the uniform flow velocity due to the presence of the obstacle. This results in a nonlinear term ( v ⋅ ∇ ) v {\displaystyle (\mathbf {v} \cdot \nabla )\mathbf {v} } in the Navier–Stokes equations that is proportional to the velocity of the fluid.
A vortex sheet is a term used in fluid mechanics for a surface across which there is a discontinuity in fluid velocity, such as in slippage of one layer of fluid over another. [1] While the tangential components of the flow velocity are discontinuous across the vortex sheet, the normal component of the flow velocity is continuous.
The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.