Search results
Results from the WOW.Com Content Network
In number theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n; that is, a solution x to the equation (or congruence) ().
If g is a primitive root modulo p, then g is also a primitive root modulo all powers p k unless g p −1 ≡ 1 (mod p 2); in that case, g + p is. [14] If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a ...
For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 (x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2.
Equivalently, the formula can be derived by the same argument applied to the multiplicative group of the n th roots of unity and the primitive d th roots of unity. The formula can also be derived from elementary arithmetic. [19] For example, let n = 20 and consider the positive fractions up to 1 with denominator 20:
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function: is a Dirichlet character of modulus (where is a positive integer) if for all integers and : [1]
Such an element is called a primitive λ-root modulo n. The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910. [ 1 ] It is also known as Carmichael's λ function , the reduced totient function , and the least universal exponent function .
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...
q-3, q-4, q-9, and, for q > 11, q-12 are primitive roots If p is a Sophie Germain prime greater than 3, then p must be congruent to 2 mod 3. For, if not, it would be congruent to 1 mod 3 and 2 p + 1 would be congruent to 3 mod 3, impossible for a prime number. [ 16 ]