enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transmission electron microscopy DNA sequencing - Wikipedia

    en.wikipedia.org/wiki/Transmission_electron...

    The electron microscope can achieve a resolution of up to 100 picometers, allowing eukaryotic cells, prokaryotic cells, viruses, ribosomes, and even single atoms to be visualized (note the logarithmic scale). Transmission electron microscopy DNA sequencing is a single-molecule sequencing technology that uses transmission electron microscopy ...

  3. Electron microscope - Wikipedia

    en.wikipedia.org/wiki/Electron_microscope

    Reproduction of an early electron microscope constructed by Ernst Ruska in the 1930s. Many developments laid the groundwork of the electron optics used in microscopes. [2] One significant step was the work of Hertz in 1883 [3] who made a cathode-ray tube with electrostatic and magnetic deflection, demonstrating manipulation of the direction of an electron beam.

  4. Transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Transmission_electron...

    Operating principle of a transmission electron microscope. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid.

  5. Nucleic acid structure determination - Wikipedia

    en.wikipedia.org/wiki/Nucleic_acid_structure...

    Transmission electron microscopy, as a technique, utilizes the fact that samples interact with a beam of electrons and only parts of the sample that do not interact with the electron beam are allowed to 'transmit' onto the electron detection system. TEM, in general, has been a useful technique in determining nucleic acid structure since the 1960s.

  6. Scanning transmission electron microscopy - Wikipedia

    en.wikipedia.org/wiki/Scanning_transmission...

    A scanning transmission electron microscope (STEM) is a type of transmission electron microscope (TEM). Pronunciation is [stɛm] or [ɛsti:i:ɛm]. As with a conventional transmission electron microscope (CTEM), images are formed by electrons passing through a sufficiently thin specimen. However, unlike CTEM, in STEM the electron beam is focused ...

  7. R-loop - Wikipedia

    en.wikipedia.org/wiki/R-loop

    R-loop mapping is a laboratory technique used to distinguish introns from exons in double-stranded DNA. [10] These R-loops are visualized by electron microscopy and reveal intron regions of DNA by creating unbound loops at these regions. [11]

  8. Thermo Fisher Scientific (TMO) Q4 2024 Earnings Call Transcript

    www.aol.com/finance/thermo-fisher-scientific-tmo...

    The strong growth in the quarter was led by electron microscopy and chromatography and mass spectrometry businesses. For the full year, both reported revenue and organic revenue grew 3%.

  9. Mitochondrial DNA - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_DNA

    The mitochondria, and thus mitochondrial DNA, are passed exclusively from mother to offspring through the egg cell. Illustration of the location of mitochondrial DNA in human cells Electron microscopy reveals mitochondrial DNA in discrete foci. Bars: 200 nm.