Search results
Results from the WOW.Com Content Network
[1] [2] [3] Introduced by Gilbert N. Lewis in his 1916 article The Atom and the Molecule, a Lewis structure can be drawn for any covalently bonded molecule, as well as coordination compounds. [4] Lewis structures extend the concept of the electron dot diagram by adding lines between atoms to represent shared pairs in a chemical bond.
Configuration around double bonds is specified using the characters / and \ to show directional single bonds adjacent to a double bond. For example, F/C=C/F (see depiction) is one representation of trans-1,2-difluoroethylene, in which the fluorine atoms are on opposite sides of the double bond (as shown in the figure), whereas F/C=C\F (see ...
The bond order has been described as 1.4 (intermediate between a single and double bond). It is isoelectronic with N 2. [80] Lewis dot diagram structures show three formal alternatives for describing bonding in boron monofluoride.
Examples of Lewis dot diagrams used to represent electrons in the chemical bonds between atoms, here showing carbon (C), hydrogen (H), and oxygen (O). Lewis diagrams were developed in 1916 by Gilbert N. Lewis to describe chemical bonding and are still widely used today. Each line segment or pair of dots represents a pair of electrons.
Fructose, with a bond at the hydroxyl (OH) group upper left of image with unknown or unspecified stereochemistry. Wavy single bonds represent unknown or unspecified stereochemistry or a mixture of isomers. For example, the adjacent diagram shows the fructose molecule with a wavy bond to the HOCH 2 - group at the left. In this case the two ...
(b) The top shows both the dot-and-cross diagram and the simplified diagram of the LDQ structure of the NO radical. Below is shown the dimerisation reaction of the NO monomer into the N 2 O 2 dimer. Hence, the dimerisation of CN to cyanogen is favourable as it increases the degree of bonding in the overall system and reduces the total energy.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Stereochemistry demands special attention because three-dimensionality is the most difficult part of a structure to visualize. Techniques for presenting 3-dimensional structures reflect the tastes of the artist. Three dimensionality is best highlighted by the depictions of bonds, using wedges, bolding, and hashed formats.