enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    Inner product spaces are a subset of normed vector spaces, which are a subset of metric spaces, which in turn are a subset of topological spaces. In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. [1]

  3. Anderson–Kadec theorem - Wikipedia

    en.wikipedia.org/wiki/Anderson–Kadec_theorem

    Eidelheit theorem: A Fréchet space is either isomorphic to a Banach space, or has a quotient space isomorphic to . Kadec renorming theorem: Every separable Banach space X {\displaystyle X} admits a Kadec norm with respect to a countable total subset A ⊆ X ∗ {\displaystyle A\subseteq X^{*}} of X ∗ . {\displaystyle X^{*}.}

  4. Dvoretzky's theorem - Wikipedia

    en.wikipedia.org/wiki/Dvoretzky's_theorem

    In mathematics, Dvoretzky's theorem is an important structural theorem about normed vector spaces proved by Aryeh Dvoretzky in the early 1960s, [1] answering a question of Alexander Grothendieck. In essence, it says that every sufficiently high-dimensional normed vector space will have low-dimensional subspaces that are approximately Euclidean .

  5. Strictly convex space - Wikipedia

    en.wikipedia.org/wiki/Strictly_convex_space

    In mathematics, a strictly convex space is a normed vector space (X, || ||) for which the closed unit ball is a strictly convex set. Put another way, a strictly convex space is one for which, given any two distinct points x and y on the unit sphere ∂B (i.e. the boundary of the unit ball B of X), the segment joining x and y meets ∂B only at ...

  6. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    For example, modules need not have bases, as the Z-module (that is, abelian group) Z/2Z shows; those modules that do (including all vector spaces) are known as free modules. Nevertheless, a vector space can be compactly defined as a module over a ring which is a field, with the elements being called vectors. Some authors use the term vector ...

  7. Banach lattice - Wikipedia

    en.wikipedia.org/wiki/Banach_lattice

    Banach lattices are extremely common in functional analysis, and "every known example [in 1948] of a Banach space [was] also a vector lattice." [1] In particular: ℝ, together with its absolute value as a norm, is a Banach lattice.

  8. Polarization identity - Wikipedia

    en.wikipedia.org/wiki/Polarization_identity

    In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm.

  9. Auxiliary normed space - Wikipedia

    en.wikipedia.org/wiki/Auxiliary_normed_space

    In this case, we take to be the vector space instead of / {} so that the notation is unambiguous (whether denotes the space induced by a radial disk or the space induced by a bounded disk). [ 1 ] The quotient topology τ Q {\displaystyle \tau _{Q}} on X / p V − 1 ( 0 ) {\displaystyle X/p_{V}^{-1}(0)} (inherited from X {\displaystyle X} 's ...