enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    The same set of APIs defined in the NumPy package (numpy.*) are available under cupy.* package. Multi-dimensional array (cupy.ndarray) for boolean, integer, float, and complex data types; Module-level functions; Linear algebra functions; Fast Fourier transform; Random number generator

  3. NumPy - Wikipedia

    en.wikipedia.org/wiki/NumPy

    NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]

  4. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.

  5. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    The bfloat16 format, being a shortened IEEE 754 single-precision 32-bit float, allows for fast conversion to and from an IEEE 754 single-precision 32-bit float; in conversion to the bfloat16 format, the exponent bits are preserved while the significand field can be reduced by truncation (thus corresponding to round toward 0) or other rounding ...

  6. Half-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Half-precision_floating...

    Fast Half Float Conversions; Analog Devices variant (four-bit exponent) C source code to convert between IEEE double, single, and half precision can be found here; Java source code for half-precision floating-point conversion; Half precision floating point for one of the extended GCC features

  7. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    Function rank is an important concept to array programming languages in general, by analogy to tensor rank in mathematics: functions that operate on data may be classified by the number of dimensions they act on. Ordinary multiplication, for example, is a scalar ranked function because it operates on zero-dimensional data (individual numbers).

  8. TensorFloat-32 - Wikipedia

    en.wikipedia.org/wiki/TensorFloat-32

    The binary format is: 1 sign bit; 8 exponent bits; 10 fraction bits (also called mantissa, or precision bits) The total 19 bits fits within a double word (32 bits), and while it lacks precision compared with a normal 32 bit IEEE 754 floating point number, provides much faster computation, up to 8 times on a A100 (compared to a V100 using FP32).

  9. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    As exchanging the indices of an array is the essence of array transposition, an array stored as row-major but read as column-major (or vice versa) will appear transposed. As actually performing this rearrangement in memory is typically an expensive operation, some systems provide options to specify individual matrices as being stored transposed.