Search results
Results from the WOW.Com Content Network
Mathematics is essential in the natural sciences, engineering, medicine, finance, computer science, and the social sciences. Although mathematics is extensively used for modeling phenomena, the fundamental truths of mathematics are independent of any scientific experimentation.
The Unreasonable Effectiveness of Mathematics in the Natural Sciences" is a 1960 article written by the physicist Eugene Wigner, published in Communication in Pure and Applied Mathematics. [ 1 ] [ 2 ] In it, Wigner observes that a theoretical physics's mathematical structure often points the way to further advances in that theory and to ...
Alfred North Whitehead OM FRS FBA (15 February 1861 – 30 December 1947) was an English mathematician and philosopher.He created the philosophical school known as process philosophy, [2] which has been applied in a wide variety of disciplines, including ecology, theology, education, physics, biology, economics, and psychology.
Mathematics is the language of nature, and is the primary conceptual structure we would have in common with extraterrestrial aliens, if any such there be. Mathematical proof is the gateway to a realm of transcendent truth. Reasoning is logic, and logic is essentially mathematical. Hence mathematics structures all possible reasoning.
Philosophy of mathematics is the branch of philosophy that deals with the nature of mathematics and its relationship to other areas of philosophy, particularly epistemology and metaphysics. Central questions posed include whether or not mathematical objects are purely abstract entities or are in some way concrete, and in what the relationship ...
Mathematics is the science that draws necessary conclusions. [10] Benjamin Peirce 1870. All Mathematics is Symbolic Logic. [8] Bertrand Russell 1903. Peirce did not think that mathematics is the same as logic, since he thought mathematics makes only hypothetical assertions, not categorical ones. [11]
David Hilbert. A major figure of formalism was David Hilbert, whose program was intended to be a complete and consistent axiomatization of all of mathematics. [8] Hilbert aimed to show the consistency of mathematical systems from the assumption that the "finitary arithmetic" (a subsystem of the usual arithmetic of the positive integers, chosen to be philosophically uncontroversial) was ...
In mathematics, a representation is a very general relationship that expresses similarities (or equivalences) between mathematical objects or structures.Roughly speaking, a collection Y of mathematical objects may be said to represent another collection X of objects, provided that the properties and relationships existing among the representing objects y i conform, in some consistent way, to ...