enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Opto-isolator - Wikipedia

    en.wikipedia.org/wiki/Opto-isolator

    Schematic diagram of an opto-isolator showing source of light (LED) on the left, dielectric barrier in the center, and sensor (phototransistor) on the right [note 1]. An opto-isolator (also called an optocoupler, photocoupler, or optical isolator) is an electronic component that transfers electrical signals between two isolated circuits by using light. [1]

  3. Reciprocity (electrical networks) - Wikipedia

    en.wikipedia.org/wiki/Reciprocity_(electrical...

    Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first.

  4. Current divider - Wikipedia

    en.wikipedia.org/wiki/Current_divider

    Figure 1: Schematic of an electrical circuit illustrating current division. Notation R T refers to the total resistance of the circuit to the right of resistor R X.. In electronics, a current divider is a simple linear circuit that produces an output current (I X) that is a fraction of its input current (I T).

  5. Nodal analysis - Wikipedia

    en.wikipedia.org/wiki/Nodal_analysis

    Kirchhoff's current law is the basis of nodal analysis. In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage (potential difference) between "nodes" (points where elements or branches connect) in an electrical circuit in terms of the branch currents.

  6. Thévenin's theorem - Wikipedia

    en.wikipedia.org/wiki/Thévenin's_theorem

    Thévenin's theorem and its dual, Norton's theorem, are widely used to make circuit analysis simpler and to study a circuit's initial-condition and steady-state response. [ 8 ] [ 9 ] Thévenin's theorem can be used to convert any circuit's sources and impedances to a Thévenin equivalent ; use of the theorem may in some cases be more convenient ...

  7. Norton's theorem - Wikipedia

    en.wikipedia.org/wiki/Norton's_theorem

    Norton's theorem and its dual, Thévenin's theorem, are widely used for circuit analysis simplification and to study circuit's initial-condition and steady-state response. Norton's theorem was independently derived in 1926 by Siemens & Halske researcher Hans Ferdinand Mayer (1895–1980) and Bell Labs engineer Edward Lawry Norton (1898–1983).

  8. Extra-low voltage - Wikipedia

    en.wikipedia.org/wiki/Extra-low_voltage

    Examples for FELV circuits include those that generate an extra low voltage through a semiconductor device or a potentiometer or an autotransformer. A typical example is an electronically controlled toaster where the electronic timer circuit runs off an extra low voltage derived from a tap on the heating element. Another might be ELV signalling ...

  9. Miller theorem - Wikipedia

    en.wikipedia.org/wiki/Miller_theorem

    The theorems are useful in 'circuit analysis' especially for analyzing circuits with feedback [1] and certain transistor amplifiers at high frequencies. [ 2 ] There is a close relationship between Miller theorem and Miller effect: the theorem may be considered as a generalization of the effect and the effect may be thought as of a special case ...