Search results
Results from the WOW.Com Content Network
Dopaminergic pathways (dopamine pathways, dopaminergic projections) in the human brain are involved in both physiological and behavioral processes including movement, cognition, executive functions, reward, motivation, and neuroendocrine control. [1] Each pathway is a set of projection neurons, consisting of individual dopaminergic neurons.
The direct pathway, sometimes known as the direct pathway of movement, is a neural pathway within the central nervous system (CNS) through the basal ganglia which facilitates the initiation and execution of voluntary movement. [1] It works in conjunction with the indirect pathway.
The mesolimbic pathway and its positioning in relation to the other dopaminergic pathways. The mesolimbic pathway is a collection of dopaminergic (i.e., dopamine-releasing) neurons that project from the ventral tegmental area (VTA) to the ventral striatum, which includes the nucleus accumbens (NAcc) and olfactory tubercle. [9]
The substantia nigra is located in the ventral midbrain of each hemisphere. It has two distinct parts, the pars compacta (SNc) and the pars reticulata (SNr). The pars compacta contains dopaminergic neurons from the A9 cell group that forms the nigrostriatal pathway that, by supplying dopamine to the striatum, relays information to the basal ganglia.
This pathway also, as a result of inhibiting the GPe, disinhibits the subthalamic nucleus, which results in excitation of the GPi, and therefore inhibition of the thalamus. The second pathway, is called the direct (or Go) pathway and is excitatory. This pathway inhibits the GPi, resulting in the disinhibition of the thalamus.
The balance of direct/indirect activity in movement is supported by evidence from neurodegenerative disorders, including Parkinson's disease (PD), which is characterized by loss of dopamine neurons projecting to the striatum, hypoactivity in direct pathway and hyperactivity in indirect pathway neurons, along with motor dysfunction. [21]
Dopaminergic cell groups, DA cell groups, or dopaminergic nuclei are collections of neurons in the central nervous system that synthesize the neurotransmitter dopamine. [1] In the 1960s, dopaminergic neurons or dopamine neurons were first identified and named by Annica Dahlström and Kjell Fuxe, who used histochemical fluorescence. [2]
Neurochemical studies have shown that BSR results in the release of dopamine within the nucleus accumbens. [21] This effect is generally potentiated following administration of drugs that themselves increase the amount of extracellular dopamine in the nucleus accumbens, such as cocaine , which inhibits re-uptake of dopamine to the intracellular ...