Search results
Results from the WOW.Com Content Network
Schematic of contact area for the JKR model JKR test with a rigid bead on a deformable planar material: complete cycle. To incorporate the effect of adhesion in Hertzian contact, Johnson, Kendall, and Roberts [5] formulated the JKR theory of adhesive contact using a balance between the stored elastic energy and the loss in surface energy. The ...
The bearing capacity of soil is the average contact stress between a foundation and the soil which will cause shear failure in the soil. Allowable bearing stress is the bearing capacity divided by a factor of safety.
Finally there are the processes at the contact interface: compression and adhesion in the direction perpendicular to the interface, and friction and micro-slip in the tangential directions. The last aspect is the primary concern of contact mechanics. It is described in terms of so-called contact conditions. For the direction perpendicular to ...
The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of ...
Newmark's Influence Chart is an illustration used to determine the vertical pressure at any point below a uniformly loaded flexible area of soil of any shape. This method, like others, was derived by integration of Boussinesq's equation for a point load. [1]
Bearing pressure is a particular case of contact mechanics often occurring in cases where a convex surface (male cylinder or sphere) contacts a concave surface (female cylinder or sphere: bore or hemispherical cup). Excessive contact pressure can lead to a typical bearing failure such as a plastic deformation similar to peening.
If the soil is saturated by water, a condition that often exists when the soil is below the water table or sea level, then water fills the gaps between soil grains ('pore spaces'). In response to soil compressing, the pore water pressure increases and the water attempts to flow out from the soil to zones of low pressure (usually upward towards ...
The name cam clay asserts that the plastic volume change typical of clay soil behaviour is due to mechanical stability of an aggregate of small, rough, frictional, interlocking hard particles. [3] The Original Cam-Clay model is based on the assumption that the soil is isotropic, elasto-plastic, deforms as a continuum, and it is not affected by ...