enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    A common algorithm design tactic is to divide a problem into sub-problems of the same type as the original, solve those sub-problems, and combine the results. This is often referred to as the divide-and-conquer method; when combined with a lookup table that stores the results of previously solved sub-problems (to avoid solving them repeatedly and incurring extra computation time), it can be ...

  3. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    For infinite trees, simple algorithms often fail this. For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will ...

  4. Mutual recursion - Wikipedia

    en.wikipedia.org/wiki/Mutual_recursion

    These examples reduce easily to a single recursive function by inlining the forest function in the tree function, which is commonly done in practice: directly recursive functions that operate on trees sequentially process the value of the node and recurse on the children within one function, rather than dividing these into two separate functions.

  5. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...

  6. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    The leaves of the tree are the base cases of the recursion, the subproblems (of size less than k) that do not recurse. The above example would have a child nodes at each non-leaf node. Each node does an amount of work that corresponds to the size of the subproblem n passed to that instance of the recursive call and given by (). The total amount ...

  7. Threaded binary tree - Wikipedia

    en.wikipedia.org/wiki/Threaded_binary_tree

    One problem with this algorithm is that, because of its recursion, it uses stack space proportional to the height of a tree. If the tree is fairly balanced, this amounts to O(log n) space for a tree containing n elements. In the worst case, when the tree takes the form of a chain, the height of the tree is n so the algorithm takes O(n) space. A ...

  8. Recursive partitioning - Wikipedia

    en.wikipedia.org/wiki/Recursive_partitioning

    Well known methods of recursive partitioning include Ross Quinlan's ID3 algorithm and its successors, C4.5 and C5.0 and Classification and Regression Trees (CART). Ensemble learning methods such as Random Forests help to overcome a common criticism of these methods – their vulnerability to overfitting of the data – by employing different ...

  9. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    For example, consider the recursive formulation for generating the Fibonacci sequence: F i = F i−1 + F i−2, with base case F 1 = F 2 = 1. Then F 43 = F 42 + F 41, and F 42 = F 41 + F 40. Now F 41 is being solved in the recursive sub-trees of both F 43 as well as F 42. Even though the total number of sub-problems is actually small (only 43 ...