enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    In SI units, this acceleration is expressed in metres per second squared (in symbols, m/s 2 or m·s −2) or equivalently in newtons per kilogram (N/kg or N·kg1). Near Earth's surface, the acceleration due to gravity, accurate to 2 significant figures, is 9.8 m/s 2 (32 ft/s 2).

  3. Metre per second squared - Wikipedia

    en.wikipedia.org/wiki/Metre_per_second_squared

    Newton's second law states that force equals mass multiplied by acceleration. The unit of force is the newton (N), and mass has the SI unit kilogram (kg). One newton equals one kilogram metre per second squared. Therefore, the unit metre per second squared is equivalent to newton per kilogram, N·kg1, or N/kg. [2]

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude. A conventional standard value is defined exactly as 9.80665 m/s² (about 32.1740 ft/s²). Locations of significant variation from this value are known as gravity ...

  5. Earth mass - Wikipedia

    en.wikipedia.org/wiki/Earth_mass

    An Earth mass (denoted as M 🜨, M ♁ or M E, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth. The current best estimate for the mass of Earth is M 🜨 = 5.9722 × 10 24 kg , with a relative uncertainty of 10 −4 . [ 2 ]

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...

  7. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    In scientific contexts, mass is the amount of "matter" in an object (though "matter" may be difficult to define), but weight is the force exerted on an object's matter by gravity. [1] At the Earth's surface, an object whose mass is exactly one kilogram weighs approximately 9.81 newtons, the product of its mass and the gravitational field ...

  8. Surface gravity - Wikipedia

    en.wikipedia.org/wiki/Surface_gravity

    These proportionalities may be expressed by the formula: where g is the surface gravity of an object, expressed as a multiple of the Earth's, m is its mass, expressed as a multiple of the Earth's mass (5.976 × 10 24 kg) and r its radius, expressed as a multiple of the Earth's (mean) radius (6,371 km). [9]

  9. Gal (unit) - Wikipedia

    en.wikipedia.org/wiki/Gal_(unit)

    In SI base units, 1 Gal is equal to 0.01 m/s 2. The acceleration due to Earth's gravity at its surface is 976 to 983 Gal, the variation being due mainly to differences in latitude and elevation . Standard gravity is 980.665 Gal. Mountains and masses of lesser density within the Earth's crust typically cause variations in gravitational ...