enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The behavior of a thermodynamic system is summarized in the laws of Thermodynamics, which concisely are: . Zeroth law of thermodynamics; If A, B, C are thermodynamic systems such that A is in thermal equilibrium with B and B is in thermal equilibrium with C, then A is in thermal equilibrium with C.

  3. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.

  4. Volume (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Volume_(thermodynamics)

    Specific volume is the volume occupied by a unit of mass of a material. [1] In many cases, the specific volume is a useful quantity to determine because, as an intensive property, it can be used to determine the complete state of a system in conjunction with another independent intensive variable. The specific volume also allows systems to be ...

  5. Bridgman's thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Bridgman's_thermodynamic...

    In thermodynamics, Bridgman's thermodynamic equations are a basic set of thermodynamic equations, derived using a method of generating multiple thermodynamic identities involving a number of thermodynamic quantities.

  6. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The first law of thermodynamics is essentially a definition of heat, i.e. heat is the change in the internal energy of a system that is not caused by a change of the external parameters of the system. However, the second law of thermodynamics is not a defining relation for the entropy.

  7. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    The properties molar internal energy, , and entropy, , defined by the first and second laws of thermodynamics, hence all thermodynamic properties of a simple compressible substance, can be specified, up to a constant of integration, by two measurable functions, a mechanical equation of state, = (,), and a constant volume specific heat, (,).

  8. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...

  9. Amagat's law - Wikipedia

    en.wikipedia.org/wiki/Amagat's_law

    Amagat's law states that the extensive volume V = Nv of a gas mixture is equal to the sum of volumes V i of the K component gases, if the temperature T and the pressure p remain the same: [1] [2] (,) = = (,). This is the experimental expression of volume as an extensive quantity.