Ad
related to: how to predict protein interaction
Search results
Results from the WOW.Com Content Network
Protein–protein interaction prediction is a field combining bioinformatics and structural biology in an attempt to identify and catalog physical interactions between pairs or groups of proteins. Understanding protein–protein interactions is important for the investigation of intracellular signaling pathways, modelling of protein complex ...
Protein–protein docking, the prediction of protein–protein interactions based only on the three-dimensional protein structures from X-ray diffraction of protein crystals might not be satisfactory. [44] [45] Network analysis includes the analysis of interaction networks using methods of graph theory or statistical methods.
This list of protein subcellular localisation prediction tools includes software, databases, and web services that are used for protein subcellular localization prediction. Some tools are included that are commonly used to infer location through predicted structural properties, such as signal peptide or transmembrane helices , and these tools ...
An example protein interaction network, produced through the STRING web resource. Patterns of protein interactions within networks are used to infer function. Here, products of the bacterial trp genes coding for tryptophan synthase are shown to interact with themselves and other, related proteins.
The protein protein interactions are displayed in a signed network that describes what type of interactions that are taking place [74] Protein–protein interactions often result in one of the interacting proteins either being 'activated' or 'repressed'. Such effects can be indicated in a PPI network by "signs" (e.g. "activation" or "inhibition").
In molecular biology, an interactome is the whole set of molecular interactions in a particular cell.The term specifically refers to physical interactions among molecules (such as those among proteins, also known as protein–protein interactions, PPIs; or between small molecules and proteins [1]) but can also describe sets of indirect interactions among genes (genetic interactions).
Protein–protein complexes are the most commonly attempted targets of such modelling, followed by protein–nucleic acid complexes. [1] The ultimate goal of docking is the prediction of the three-dimensional structure of the macromolecular complex of interest as it would occur in a living organism.
Protein–protein interaction screening refers to the identification of Protein–protein interaction with high-throughput screening methods such as computer- and/or robot-assisted plate reading, flow cytometry analyzing. The interactions between proteins are central to virtually every process in a living cell.
Ad
related to: how to predict protein interaction