enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Verification and validation of computer simulation models

    en.wikipedia.org/wiki/Verification_and...

    The validation test consists of comparing outputs from the system under consideration to model outputs for the same set of input conditions. Data recorded while observing the system must be available in order to perform this test. [3] The model output that is of primary interest should be used as the measure of performance. [1]

  4. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).

  5. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    More abstractly, learning curves plot the difference between learning effort and predictive performance, where "learning effort" usually means the number of training samples, and "predictive performance" means accuracy on testing samples. [3] Learning curves have many useful purposes in ML, including: [4] [5] [6] choosing model parameters ...

  6. Confusion matrix - Wikipedia

    en.wikipedia.org/wiki/Confusion_matrix

    The overall accuracy would be 95%, but in more detail the classifier would have a 100% recognition rate (sensitivity) for the cancer class but a 0% recognition rate for the non-cancer class. F1 score is even more unreliable in such cases, and here would yield over 97.4%, whereas informedness removes such bias and yields 0 as the probability of ...

  7. Boosting (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Boosting_(machine_learning)

    In machine learning (ML), boosting is an ensemble metaheuristic for primarily reducing bias (as opposed to variance). [1] It can also improve the stability and accuracy of ML classification and regression algorithms. Hence, it is prevalent in supervised learning for converting weak learners to strong learners. [2]

  8. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    Even though the accuracy is ⁠ 10 + 999000 / 1000000 ⁠ ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of ⁠ 10 / 10 + 990 ⁠ = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = ⁠ 2 × 0.01 × 1 / 0.01 + 1 ⁠ ≈ 2% (the recall being ⁠ 10 + 0 / 10 ...

  9. Gradient boosting - Wikipedia

    en.wikipedia.org/wiki/Gradient_boosting

    It gives a prediction model in the form of an ensemble of weak prediction models, i.e., models that make very few assumptions about the data, which are typically simple decision trees. [ 1 ] [ 2 ] When a decision tree is the weak learner, the resulting algorithm is called gradient-boosted trees; it usually outperforms random forest . [ 1 ]