Search results
Results from the WOW.Com Content Network
In formal language theory and pattern matching (including regular expressions), the concatenation operation on strings is generalised to an operation on sets of strings as follows: For two sets of strings S 1 and S 2, the concatenation S 1 S 2 consists of all strings of the form vw where v is a string from S 1 and w is a string from S 2, or ...
COBOL uses the STRING statement to concatenate string variables. MATLAB and Octave use the syntax "[x y]" to concatenate x and y. Visual Basic and Visual Basic .NET can also use the "+" sign but at the risk of ambiguity if a string representing a number and a number are together. Microsoft Excel allows both "&" and the function "=CONCATENATE(X,Y)".
Concatenation theory, also called string theory, character-string theory, or theoretical syntax, studies character strings over finite alphabets of characters, signs, symbols, or marks. String theory is foundational for formal linguistics , computer science, logic, and metamathematics especially proof theory. [ 1 ]
Given regular expressions R and S, the following operations over them are defined to produce regular expressions: (concatenation) (RS) denotes the set of strings that can be obtained by concatenating a string accepted by R and a string accepted by S (in that order). For example, let R denote {"ab", "c"} and S denote {"d", "ef"}.
String functions are used in computer programming languages to manipulate a string or query information about a string (some do both).. Most programming languages that have a string datatype will have some string functions although there may be other low-level ways within each language to handle strings directly.
In terms of a merge-base theory of language acquisition, complements and specifiers are simply notations for first-merge (read as "complement-of" [head-complement]), and later second-merge (read as "specifier-of" [specifier-head]), with merge always forming to a head. First-merge establishes only a set {a, b} and is not an ordered pair.
A block-nested loop (BNL) is an algorithm used to join two relations in a relational database. [ 1 ] This algorithm [ 2 ] is a variation of the simple nested loop join and joins two relations R {\displaystyle R} and S {\displaystyle S} (the "outer" and "inner" join operands, respectively).
A string homomorphism (often referred to simply as a homomorphism in formal language theory) is a string substitution such that each character is replaced by a single string. That is, f ( a ) = s {\displaystyle f(a)=s} , where s {\displaystyle s} is a string, for each character a {\displaystyle a} .