Search results
Results from the WOW.Com Content Network
The elongation and membrane targeting stages of eukaryotic translation. The ribosome is green and yellow, the tRNAs are dark-blue, and the other proteins involved are light-blue. Elongation depends on eukaryotic elongation factors. At the end of the initiation step, the mRNA is positioned so that the next codon can be translated during the ...
EF-G catalyzes the translocation of the tRNA and mRNA down the ribosome at the end of each round of polypeptide elongation. [1] In this process, the peptidyl transferase center (PTC) has catalyzed the formation of a peptide bond between amino acids, moving the polypeptide chain from the P site tRNA to the A site tRNA. The 50S and 30S ribosomal ...
Elongation: The last tRNA validated by the small ribosomal subunit (accommodation) transfers the amino acid. It carries to the large ribosomal subunit which binds it to one of the preceding admitted tRNA (transpeptidation). The ribosome then moves to the next mRNA codon to continue the process (translocation), creating an amino acid chain.
In the final stage of elongation, called translocation, the deacylated tRNA (in the P site) and the dipeptidyl-tRNA (in the A site) along with its corresponding codons move to the E and P sites, respectively, and a new codon moves into the A site. This process is catalyzed by elongation factor G (EF-G).
EC 7.2.1 Translocation of inorganic cations linked to oxidoreductase reactions; EC 7.2.2 Translocation of inorganic cations linked to the hydrolysis of a nucleoside triphosphate; EC 7.2.4 Translocation of inorganic cations linked to decarboxylation; An important translocase contained in this group is Na+/K+ pump, also known as EC 7.2.2.13.
Elongation is the most rapid step in translation. [3] In bacteria , it proceeds at a rate of 15 to 20 amino acids added per second (about 45-60 nucleotides per second). [ citation needed ] In eukaryotes the rate is about two amino acids per second (about 6 nucleotides read per second).
Due to the fact that translation elongation is an irreversible process, there are few known mechanisms of its regulation. However, it has been shown that translational efficiency is reduced via diminished tRNA pools, which are required for the elongation of polypeptides.
Then, in a process catalyzed by the prokaryotic elongation factor EF-G (historically known as translocase), the coordinated translocation of the tRNAs and mRNA occurs, with the P-site tRNA moving to the E-site, where it dissociates from the ribosome, and the A-site tRNA moves to take its place in the P-site. [6] [7]