enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  3. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  4. Magnitude (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(mathematics)

    The absolute value of a real number r is defined by: [4] | | =, | | =, < Absolute value may also be thought of as the number's distance from zero on the real number line. For example, the absolute value of both 70 and −70 is 70.

  5. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    The p-adic valuation is a valuation and gives rise to an analogue of the usual absolute value. Whereas the completion of the rational numbers with respect to the usual absolute value results in the real numbers R {\displaystyle \mathbb {R} } , the completion of the rational numbers with respect to the p {\displaystyle p} -adic absolute value ...

  6. Positive and negative parts - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative_parts

    The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.

  7. Ostrowski's theorem - Wikipedia

    en.wikipedia.org/wiki/Ostrowski's_theorem

    In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p-adic absolute value. [1]

  8. Folded normal distribution - Wikipedia

    en.wikipedia.org/wiki/Folded_normal_distribution

    The distribution is called "folded" because probability mass to the left of x = 0 is folded over by taking the absolute value. In the physics of heat conduction , the folded normal distribution is a fundamental solution of the heat equation on the half space; it corresponds to having a perfect insulator on a hyperplane through the origin.

  9. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    The lowest value a function attains. absolute value The absolute value or modulus |x| of a real number x is the non-negative value of x without regard to its sign. Namely, |x| = x for a positive x, |x| = −x for a negative x (in which case −x is positive), and |0| = 0. For example, the absolute value of 3 is 3, and the absolute value of −3 ...