Search results
Results from the WOW.Com Content Network
The chelate effect is the greater affinity of chelating ligands for a metal ion than that of similar nonchelating (monodentate) ligands for the same metal. The thermodynamic principles underpinning the chelate effect are illustrated by the contrasting affinities of copper(II) for ethylenediamine (en) vs. methylamine.
Proteins can coordinate metal ions on their surface and it is possible to separate proteins using chromatography by making use of the difference in their affinity to metal ions. This is termed as immobilized metal ion affinity chromatography (IMAC), as originally introduced in 1975 under the name metal chelate affinity chromatography. [3]
Poly metal chelating resin has almost negligible affinity to both alkali and alkaline earth metals; small quantities of resin can be utilized to concentrate trace metals in natural water systems or biological fluids, in which there are three or four orders of magnitude greater alkali and alkaline earth metal concentration than the trace metal ...
Microbes usually release the iron from the siderophore by reduction to Fe 2+ which has little affinity to these ligands. [8] [2] Siderophores are usually classified by the ligands used to chelate the ferric iron. The major groups of siderophores include the catecholates (phenolates), hydroxamates and carboxylates (e.g. derivatives of citric ...
Metal-binding proteins are proteins or protein domains that chelate a metal ion. [1]Binding of metal ions via chelation is usually achieved via histidines or cysteines.In some cases this is a necessary part of their folding and maintenance of a tertiary structure.
Iron chelate is commonly used for agricultural purposes to treat chlorosis, a condition in which leaves produce insufficient chlorophyll. Iron and ligand are absorbed separately by the plant roots whereby the highly stable ferric chelate is first reduced to the less stable ferrous chelate. [ 6 ]
The macrocyclic effect is the high affinity of metal cations for macrocyclic ligands, compared to their acyclic analogues. [7] [8] The high affinity of macrocyclic ligands is thought to be a combination of the entropic effect seen in the chelate effect, together with an additional energetic contribution that comes from the preorganized nature of the ligating groups (that is, no additional ...
Due to the chelate effect and macrocyclic effect, crown ethers exhibit stronger affinities for diverse cations than their divided or acyclic analogs. Hereby, the cation selectivity for alkali metal ions is mainly dependent on the size and charge density of the ion and the cavity size of the crown ether.