enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Robert G. Bartle - Wikipedia

    en.wikipedia.org/wiki/Robert_G._Bartle

    Robert Gardner Bartle (November 20, 1927 – September 18, 2003) was an American mathematician specializing in real analysis. He is known for writing the popular textbooks The Elements of Real Analysis (1964), The Elements of Integration (1966), and Introduction to Real Analysis (2011) with Donald R. Sherbert, published by John Wiley & Sons .

  3. Dini's theorem - Wikipedia

    en.wikipedia.org/wiki/Dini's_theorem

    Bartle, Robert G. and Sherbert Donald R.(2000) "Introduction to Real Analysis, Third Edition" Wiley. p 238. – Presents a proof using gauges. – Presents a proof using gauges. Edwards, Charles Henry (1994) [1973].

  4. Linear Operators (book) - Wikipedia

    en.wikipedia.org/wiki/Linear_Operators_(book)

    [3]: 30 William G. Bade and Robert G. Bartle were brought on as research assistants. [5] Dunford retired shortly after finishing the final volume. [3]: 30 Schwartz, however, went on to write similarly pathbreaking books in various other areas of mathematics. [1] [a] The book met with acclaim when published.

  5. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The Riemann integral uses the notion of length explicitly. Indeed, the element of calculation for the Riemann integral is the rectangle [a, b] × [c, d], whose area is calculated to be (b − a)(d − c). The quantity b − a is the length of the base of the rectangle and d − c is the height of the rectangle. Riemann could only use planar ...

  6. List of real analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_real_analysis_topics

    Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.

  7. Principles of Mathematical Analysis - Wikipedia

    en.wikipedia.org/wiki/Principles_of_Mathematical...

    Rudin's text was the first modern English text on classical real analysis, and its organization of topics has been frequently imitated. [1] In Chapter 1, he constructs the real and complex numbers and outlines their properties. (In the third edition, the Dedekind cut construction is sent to an appendix for pedagogical reasons.) Chapter 2 ...

  8. Martin Schechter (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Martin_Schechter...

    Martin Schechter (1930, Philadelphia – June 7, 2021) was an American mathematician whose work concerned mathematical analysis (specially partial differential equations and functional analysis and their applications to mathematical physics). He was a professor at the University of California, Irvine. [1] [2]

  9. Category:Real analysis - Wikipedia

    en.wikipedia.org/wiki/Category:Real_analysis

    Real analysis is a traditional division of mathematical analysis, along with complex analysis and functional analysis. It is mainly concerned with the 'fine' (micro-level) behaviour of real functions, and related topics. See Category:Fourier analysis for topics in harmonic analysis.