Search results
Results from the WOW.Com Content Network
In equations, the typical symbol for degrees of freedom is ν (lowercase Greek letter nu). In text and tables, the abbreviation "d.f." is commonly used. R. A. Fisher used n to symbolize degrees of freedom but modern usage typically reserves n for sample size.
where df res is the degrees of freedom of the estimate of the population variance around the model, and df tot is the degrees of freedom of the estimate of the population variance around the mean. df res is given in terms of the sample size n and the number of variables p in the model, df res = n − p − 1. df tot is given in the same way ...
The definitional equation of sample variance is = (¯), where the divisor is called the degrees of freedom (DF), the summation is called the sum of squares (SS), the result is called the mean square (MS) and the squared terms are deviations from the sample mean. ANOVA estimates 3 sample variances: a total variance based on all the observation ...
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
Since this is a biased estimate of the variance of the unobserved errors, the bias is removed by dividing the sum of the squared residuals by df = n − p − 1, instead of n, where df is the number of degrees of freedom (n minus the number of parameters (excluding the intercept) p being estimated - 1). This forms an unbiased estimate of the ...
In statistics, DFFIT and DFFITS ("difference in fit(s)") are diagnostics meant to show how influential a point is in a linear regression, first proposed in 1980. [ 1 ] DFFIT is the change in the predicted value for a point, obtained when that point is left out of the regression:
If is a -dimensional Gaussian random vector with mean vector and rank covariance matrix , then = () is chi-squared distributed with degrees of freedom. The sum of squares of statistically independent unit-variance Gaussian variables which do not have mean zero yields a generalization of the chi-squared distribution called the noncentral chi ...
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.