Search results
Results from the WOW.Com Content Network
This is a list of mathematical logic topics. For traditional syllogistic logic, see the list of topics in logic . See also the list of computability and complexity topics for more theory of algorithms .
In logic, more specifically proof theory, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style system, Hilbert-style proof system, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of formal proof system attributed to Gottlob Frege [1] and David Hilbert. [2]
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
The notion of analytic proof was introduced by Gentzen for the sequent calculus; there the analytic proofs are those that are cut-free. Much of the interest in cut-free proofs comes from the subformula property: every formula in the end sequent of a cut-free proof is a subformula of one of the premises. This allows one to show consistency of ...
Intermediate logics are in between intuitionistic logic and classical logic. Here are a few intermediate logics: Jankov logic (KC) is an extension of intuitionistic logic, which can be axiomatized by the intuitionistic axiom system plus the axiom [13].
In logic, proof by contradiction is a form of proof that establishes the truth or the validity of a proposition by showing that assuming the proposition to be false leads to a contradiction. Although it is quite freely used in mathematical proofs, not every school of mathematical thought accepts this kind of nonconstructive proof as universally ...
In mathematics and logic, a value or element that is mapped to itself by a particular function or operation. forced march sorites A type of sorites paradox involving a series of incremental steps or changes that lead to a contradiction, challenging the precision of vague predicates by forcing a march from one end of a spectrum to another. [145 ...