Search results
Results from the WOW.Com Content Network
Indeed, two Lebesgue-measurable functions may be constructed in such a way as to make their composition non-Lebesgue-measurable. The (pointwise) supremum, infimum, limit superior, and limit inferior of a sequence (viz., countably many) of real-valued measurable functions are all measurable as well. [1] [4]
is a function space.Its elements are the essentially bounded measurable functions. [2]More precisely, is defined based on an underlying measure space, (,,). Start with the set of all measurable functions from to which are essentially bounded, that is, bounded except on a set of measure zero.
In mathematics, the L p spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces.They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to the Bourbaki group (Bourbaki 1987) they were first introduced by Frigyes Riesz ().
The problem is a differential equation of the form [()] + = for an unknown function y on an interval [a, b], satisfying general homogeneous Robin boundary conditions {() + ′ ′ = + ′ ′ =. The functions p, q, and w are given in advance, and the problem is to find the function y and constants λ for which the equation has a solution.
Neural oscillations, in particular theta activity, are extensively linked to memory function. Theta rhythms are very strong in rodent hippocampi and entorhinal cortex during learning and memory retrieval, and they are believed to be vital to the induction of long-term potentiation , a potential cellular mechanism for learning and memory.
Therefore, the space of square integrable functions is a Banach space, under the metric induced by the norm, which in turn is induced by the inner product. As we have the additional property of the inner product, this is specifically a Hilbert space , because the space is complete under the metric induced by the inner product.
If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable. If A is Lebesgue-measurable and x is an element of R n, then the translation of A by x, defined by A + x = {a + x : a ∈ A}, is also Lebesgue-measurable and has the same measure as A.
The function F defined on the unit disk by F(re iθ) = (f ∗ P r)(e iθ) is harmonic, and M f is the radial maximal function of F. When M f belongs to L p (T) and p ≥ 1, the distribution f "is" a function in L p (T), namely the boundary value of F. For p ≥ 1, the real Hardy space H p (T) is a subset of L p (T).