enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Barnette's conjecture - Wikipedia

    en.wikipedia.org/wiki/Barnette's_conjecture

    Barnette's conjecture is an unsolved problem in graph theory, a branch of mathematics, concerning Hamiltonian cycles in graphs. It is named after David W. Barnette, a professor emeritus at the University of California, Davis; it states that every bipartite polyhedral graph with three edges per vertex has a Hamiltonian cycle.

  3. Steinhaus–Johnson–Trotter algorithm - Wikipedia

    en.wikipedia.org/wiki/Steinhaus–Johnson...

    The Hamiltonian cycle in the Cayley graph of the symmetric group generated by the Steinhaus–Johnson–Trotter algorithm Wheel diagram of all permutations of length = generated by the Steinhaus-Johnson-Trotter algorithm, where each permutation is color-coded (1=blue, 2=green, 3=yellow, 4=red).

  4. Hamiltonian cycle polynomial - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_cycle_polynomial

    It implies that computing, up to the -th power of , the Hamiltonian cycle polynomial of a unitary n×n-matrix over the infinite extension of any ring of characteristic q (not necessarily prime) by the formal variable is a # P-complete problem if isn't 2 and computing the Hamiltonian cycle polynomial of a -semi-unitary matrix (i.e. an n×n ...

  5. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    In planarity testing, H is a cycle and a peripheral cycle is a cycle with at most one bridge; it must be a face boundary in any planar embedding of its graph. 3. A bridge of a cycle can also mean a path that connects two vertices of a cycle but is shorter than either of the paths in the cycle connecting the same two vertices.

  6. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...

  7. Grinberg's theorem - Wikipedia

    en.wikipedia.org/wiki/Grinberg's_theorem

    A graph that can be proven non-Hamiltonian using Grinberg's theorem. In graph theory, Grinberg's theorem is a necessary condition for a planar graph to contain a Hamiltonian cycle, based on the lengths of its face cycles. If a graph does not meet this condition, it is not Hamiltonian.

  8. Cycle basis - Wikipedia

    en.wikipedia.org/wiki/Cycle_basis

    A fundamental cycle basis may be formed from any spanning tree or spanning forest of the given graph, by selecting the cycles formed by the combination of a path in the tree and a single edge outside the tree. Alternatively, if the edges of the graph have positive weights, the minimum weight cycle basis may be constructed in polynomial time.

  9. Cycle (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cycle_(graph_theory)

    The term cycle may also refer to an element of the cycle space of a graph. There are many cycle spaces, one for each coefficient field or ring. The most common is the binary cycle space (usually called simply the cycle space), which consists of the edge sets that have even degree at every vertex; it forms a vector space over the two-element field.