Search results
Results from the WOW.Com Content Network
Malfatti's assumption that the two problems are equivalent is incorrect. Lob and Richmond (), who went back to the original Italian text, observed that for some triangles a larger area can be achieved by a greedy algorithm that inscribes a single circle of maximal radius within the triangle, inscribes a second circle within one of the three remaining corners of the triangle, the one with the ...
An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides, and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.
In plane geometry, a mixtilinear incircle of a triangle is a circle which is tangent to two of its sides and internally tangent to its circumcircle. The mixtilinear incircle of a triangle tangent to the two sides containing vertex A {\displaystyle A} is called the A {\displaystyle A} -mixtilinear incircle.
If the angle subtended by the chord at the centre is 90°, then ℓ = r √2, where ℓ is the length of the chord, and r is the radius of the circle. If two secants are inscribed in the circle as shown at right, then the measurement of angle A is equal to one half the difference of the measurements of the enclosed arcs (⌢ and ⌢).
Inscribed circles of various polygons An inscribed triangle of a circle A tetrahedron (red) inscribed in a cube (yellow) which is, in turn, inscribed in a rhombic triacontahedron (grey). (Click here for rotating model) In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or ...
Given a right triangle ABC with hypotenuse AC, construct a circle Ω whose diameter is AC. Let O be the center of Ω. Let D be the intersection of Ω and the ray OB. By Thales's theorem, ∠ ADC is right. But then D must equal B. (If D lies inside ABC, ∠ ADC would be obtuse, and if D lies outside ABC, ∠ ADC would be acute.)
Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
If the blue circles are equal, the green circles are also equal. In geometry, the equal incircles theorem derives from a Japanese Sangaku, and pertains to the following construction: a series of rays are drawn from a given point to a given line such that the inscribed circles of the triangles formed by adjacent rays and the base line are equal.