enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curve sketching - Wikipedia

    en.wikipedia.org/wiki/Curve_sketching

    The following are usually easy to carry out and give important clues as to the shape of a curve: Determine the x and y intercepts of the curve. The x intercepts are found by setting y equal to 0 in the equation of the curve and solving for x. Similarly, the y intercepts are found by setting x equal to 0 in the equation of the curve and solving ...

  3. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    The stationary points are the red circles. In this graph, they are all relative maxima or relative minima. The blue squares are inflection points.. In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero.

  4. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    Although it is easily visualized on the graph (which is a curve), the notion of critical point of a function must not be confused with the notion of critical point, in some direction, of a curve (see below for a detailed definition). If g(x, y) is a differentiable function of two variables, then g(x,y) = 0 is the implicit equation of a curve.

  5. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem gives only a necessary condition for extreme function values, as some stationary points are inflection points (not a maximum or minimum). The function's second derivative , if it exists, can sometimes be used to determine whether a stationary point is a maximum or minimum.

  6. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  7. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    A geodesic between two events can also be described as the curve joining those two events which has a stationary interval (4-dimensional "length"). Stationary here is used in the sense in which that term is used in the calculus of variations, namely, that the interval along the curve varies minimally among curves that are nearby to the geodesic.

  8. Step function - Wikipedia

    en.wikipedia.org/wiki/Step_function

    The Heaviside step function is an often-used step function. A constant function is a trivial example of a step function. Then there is only one interval, =. The sign function sgn(x), which is −1 for negative numbers and +1 for positive numbers, and is the simplest non-constant step function.

  9. Stationary process - Wikipedia

    en.wikipedia.org/wiki/Stationary_process

    A trend stationary process is not strictly stationary, but can easily be transformed into a stationary process by removing the underlying trend, which is solely a function of time. Similarly, processes with one or more unit roots can be made stationary through differencing.