Search results
Results from the WOW.Com Content Network
Phenylacetylene is a prototypical terminal acetylene, undergoing many reactions expected of that functional group. It undergoes semihydrogenation over Lindlar catalyst to give styrene. In the presence of base and copper(II) salts, it undergoes oxidative coupling to give diphenylbutadiyne. [6]
Yet another method involves the coupling of iodobenzene and the copper salt of phenylacetylene in the Castro-Stephens coupling. The related Sonogashira coupling involves the coupling of iodobenzene and phenylacetylene. Diphenylacetylene is a planar molecule. The central C≡C distance is 119.8 picometers. [1]
The reaction provides a means to generate alkynes from alkenes, which are first halogenated and then dehydrohalogenated. For example, phenylacetylene can be generated from styrene by bromination followed by treatment of the resulting of 1,2-dibromo-1-phenylethane with sodium amide in ammonia: [9] [10]
An example of a coupled reaction is the phosphorylation of fructose-6-phosphate to form the intermediate fructose-1,6-bisphosphate by the enzyme phosphofructokinase accompanied by the hydrolysis of ATP in the pathway of glycolysis. The resulting chemical reaction within the metabolic pathway is highly thermodynamically favorable and, as a ...
For example, the most widely studied bacterium, E. coli strain K-12, is able to produce about 2,338 metabolic enzymes. [1] These enzymes collectively form a complex web of reactions comprising pathways by which substrates (including nutients and intermediates) are converted to products (other intermediates and end-products).
It is a member of the diyne chemical class and can be made via the Glaser coupling of phenylacetylene [2] However, a variety of other synthesis methods have been developed. [3] [4] Diphenylbutadiyne forms a variety of metal-alkyne complexes. One example is the organonickel complex (C 5 H 5 Ni) 4 C 4 (C 6 H 5) 2. [5]
For example, acetylation of histones by histone acetyltransferases (HATs) results in an expansion of local chromatin structure, allowing transcription to occur by enabling RNA polymerase to access DNA. However, removal of the acetyl group by histone deacetylases (HDACs) condenses the local chromatin structure, thereby preventing transcription. [9]
Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.