Search results
Results from the WOW.Com Content Network
English: Gray, blue, red, green, light green, black graph papers with 1 cm–0.5 cm–1 mm grids (page size: A4) in printable PDF format. Date 25 July 2013, 18:04:17
Quadratic programming (NP-hard in some cases, P if convex) Subset sum problem [3]: SP13 Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric.
In statistical quality control, the np-chart is a type of control chart used to monitor the number of nonconforming units in a sample. It is an adaptation of the p-chart and used in situations where personnel find it easier to interpret process performance in terms of concrete numbers of units rather than the somewhat more abstract proportion.
Three styles of loose leaf graph paper: 10 squares per centimeter ("millimeter paper"), 5 squares per inch (“engineering paper"), 4 squares per inch (“quad paper") Graph paper, coordinate paper, grid paper, or squared paper is writing paper that is printed with fine lines making up a regular grid. It is available either as loose leaf paper ...
In computational complexity, problems that are in the complexity class NP but are neither in the class P nor NP-complete are called NP-intermediate, and the class of such problems is called NPI. Ladner's theorem , shown in 1975 by Richard E. Ladner , [ 1 ] is a result asserting that, if P ≠ NP , then NPI is not empty; that is, NP contains ...
A drawing of the Heawood graph with three crossings. This is the minimum number of crossings among all drawings of this graph, so the graph has crossing number cr(G) = 3.. In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G.
The assignment is subject to certain constraints, such as that no two adjacent elements have the same color. Graph coloring is a special case of graph labeling. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring.
Since the clique problem is NP-complete, this polynomial-time many-one reduction shows that subgraph isomorphism is also NP-complete. [3] An alternative reduction from the Hamiltonian cycle problem translates a graph G which is to be tested for Hamiltonicity into the pair of graphs G and H, where H is a cycle having the same number of vertices ...